Arduino勉強会

2015/06/27からのアクセス回数 1955

ここで紹介したSageワークシートは、以下のURLからダウンロードできます。

http://www15191ue.sakura.ne.jp:8000/home/pub/52/

また、Sageのサーバを公開しているサイト(http://www15191ue.sakura.ne.jp:8000/)にユーザIDを作成することで、ダウンロードしたワークシートをアップロードし、実行したり、変更していろいろ動きを試すことができます。

ソフトウェアラジオ(Software Design Radio)AMラジオ編

トランジスタ技術別冊トラ技Jr 2015/3.4号に紹介されている「第1回パソコンでAMラジオ放送を聴く」をMacで試してみました。

ブレッドボードで作ったAMラジオ

ソフトウェアラジオ(Software Design Radio)AMラジオ編は、サポートページでより詳しく説明されています。

私の作成した「ブレッドボードで作ったAMラジオ」は、以下の様な物です。

th_SoftWareRadio.jpg

Mac用ソフトウェアラジオ・アプリケーション

第1回パソコンでAMラジオ放送を聴く」で紹介されているソフトウェアラジオのPC用アプリケーションは、 SDRadio.exe ver.0.99というWindows用のアプリです。

私は、Mac OSXを使っているので、Mac用のソフトウェアラジオ・アプリケーションを探しました。 今回「ブレッドボードで作ったAMラジオ」の再生用に使ったのは、 Dream 1.11 です。

Dreamを起動し、入力をマイクとし、DemodulationをAMにし、15kHzあたりのピークをクリックすると赤い線がそこに移動します。 次にFilter Bandwidthを5kHz程度にするとラジオの放送が聞こえてきます。

th_dream.jpg

私の住む高岡市で最も電波の強い放送局は北日本放送(738kHz)です。 Dreamで受信した北日本放送は、以下の様な音でした。音声は小さいですがアナウンサーの声が聞き取れます。

  • 「ブレッドボードで作ったAMラジオ」で受信した放送の一部 fileKNB_radio.wav

「ブレッドボードで作ったAMラジオ」の構成

「ブレッドボードで作ったAMラジオ」の構成を回路をトラ技Jの図1から引用します。

Fig_1.png

ブレッドボードで処理しているのは、同調・講習は増幅、局部発振、ミキサの3つの機能だけです。 どうしてこんな単純なもので、ソフトウェアラジオが聞こえるのか不思議ですね。

「ブレッドボードで作ったAMラジオ」の回路

「ブレッドボードで作ったAMラジオ」の回路をトラ技Jの図7から引用します。

th_Fig_7.jpg

「ブレッドボードで作ったAMラジオ」の仕組み

第1回 パソコンでAMラジオ放送を聴く(補足資料)の4.1に周波数変換の原理について説明があります。

ミキサの原理は、放送波を\(v_{rin} = sin(2 \pi f_r t)\)、局部発振の出力を\(v_{LO} = sin(2 \pi f_{LO}t)\)とすると、 ミキサーからでる信号は、以下の様になります。

$$ \begin{eqnarray} v_{mix} & = & sin(2 \pi f_r t) \times sin(2 \pi f_{LO} t) \\ & = & \frac{1}{2} \left \{ -cos(2\pi(f_r + f_{LO})t) + cos(2\pi(f_r - f_{LO})t) \right \} \end{eqnarray} $$

  

つまり、\(f_r - f_{LO}\)の周波数を持つ低い波と\(f_r + f_{LO}\)の周波数を持つ高い波の2つの信号に分けることができます。 ローパスフィルターを使って高い波を取り除くと、\(f_r - f_{LO}\)の低い周波数帯で放送波を扱うことができます。 これが、ミキサによる周波数変換のマジックです。

ミキサの原理を第1回 パソコンでAMラジオ放送を聴く(補足資料)から図A.14を引用します。

Fig.A_14.png

AM波では、バンド幅を15kHzとしているので、北日本放送(738kHz)に対する局部発振周波数は、753kHzになります。 「ブレッドボードで作ったAMラジオ」の発振モジュール(秋月のLTC1799)の周波数をみてみると753kHzになっています。

freq.png

Sageを使ってAM変調試す

実際にAM放送の信号が局部発振波(ここではsin波)を使ったミキサによって音声(ここでは2kHzのsin波)が取り出される様子を Sageを使って見てみましょう。

最初によく使う関数(Rutil.py)をロードします。

sageへの入力:

# R用のユーティリティーをロードする(showPNGで使用)
load(DATA+'RUtil.py')

搬送波

周波数が100kHz(北日本放送ではこれが738kHzです)で振幅1のsin波をVc(t)を定義し、Tend(0.002秒)まで出力してみます。

sageへの入力:

t= var('t')
Tend = 0.002
fc = 100000     # 100kHz
Vcm = 1.0
Vc(t) = Vcm*sin(2*pi*fc*t)
plot(Vc(t), [t, 0, Tend], figsize=5)

sage0.png

音声として2kHzのcos波

次に音声の代わりに2kHzのcos波をVs(t)と定義し、プロットします。

sageへの入力:

fs = 2000    # 2kHz
Vsm = 0.25
Vs(t) = Vsm*cos(2*pi*fs*t)+0.75
plot(Vs(t), [t, 0, Tend], figsize=5, ymin=0)

sage1.png

AM変調

WikipediaによるとAM変調は、以下の様に定義されています。 $$ v_{am} = (V_s + V_{cm})sin 2\pi f_c t $$

定義にそってAM変調された波をVam(t)を定義し、プロットします。 AM変調では、上下のエンベロープ(信号の端の形)に音声信号が現れます。

sageへの入力:

Vam(t) = (Vs(t) + Vcm)*sin(2*pi*fc*t)
plot(Vam(t), [t, 0, Tend], figsize=5)

sage2.png

局部発振とのミキサ

搬送波+15kHzの局部発振のsin波とVam(t)と掛け合わせると、以下の様に15kHzの波で音声波が 見えてきます。

sageへの入力:

band = 15000 # 15kHz
Vcros(t) = Vam(t)*sin(2*pi*(fc+band)*t)
plot(Vcros(t), [t, 0, Tend], figsize=5)

sage3.png

AM波の復調

AM変調の復調には、ミキサされた信号を絶対値absを使って片方向に揃えます。 これで、音声の2kHzの形がぼんやり見えてきます。

sageへの入力:

plot(abs(Vcros(t)), [t, 0, Tend], figsize=5)

sage4.png

ローパスフィルターを掛ける

scipyを使ってローパスフィルター(butter_lowpass_filter関数)を定義します。

sageへの入力:

# scipyを使う準備
import numpy as np
from scipy.signal import butter, lfilter, freqz
import matplotlib.pyplot as plt

sageへの入力:

# ローパスフィルターを定義
def butter_lowpass(cutoff, fs, order=5):
    nyq = 0.5 * fs
    normal_cutoff = cutoff / nyq
    b, a = butter(order, normal_cutoff, btype='low', analog=False)
    return b, a

def butter_lowpass_filter(data, cutoff, fs, order=5):
    b, a = butter_lowpass(cutoff, fs, order=order)
    y = lfilter(b, a, data)
    return y

サンプリングとフィルタリング

サンプリングレートは、96kHzとし、ローパスフィルターのカットオフ周波数を4kHzとしました。

sageへの入力:

# フィルターの仕様を決定
order = 6
fs = 96000.0     # サンプリングレート( 96kHz)
cutoff = 4000.0  # カットオフ周波数( 4kHz)

sageへの入力:

# scipyを使ってローパスフィルターを掛けるため、96kHzでサンプリング
T = Tend
n = int(T*fs)
t = np.linspace(0, T, n, endpoint=False)
# データを作成
data = [abs(Vcros(t_i)).n() for t_i in t]

ローパスフィルタを掛けた結果yとサンプリングデータdataをプロットします。 緑のフィルター後の波形に2kHzの波が取り出されています。

sageへの入力:

# dataにローパスフィルターを掛けて、オリジナルデータとフィルター後のデータを表示
y = butter_lowpass_filter(data, cutoff, fs, order)

plt.figure()
plt.plot(t, data, 'b-', label='data')
plt.plot(t, y, 'g-', linewidth=2, label='filtered data')
plt.xlabel('Time [sec]')
plt.grid()
plt.legend()
plt.savefig(DATA+'LPF.png')

sageへの入力:

showPNG('LPF.png')

th_LPF.jpg

スイッチによる方形波

局初のスイッチによる方形波をPiecewise使って以下の様に定義します。これから求まるフーリェ級数から、 奇数倍の周波数のsin波の足し合わせになっていることがわかります。

sageへの入力:

# 方形波が周波数が奇数倍のsin波を足し合わせたもの
# フーリェ級数の係数を求めます。
g = Piecewise([[(-1/2,0), lambda x: 1], [(0, 1/2),lambda x:0]])
plot(g, figsize=5)

sage5.png

\(v_{LO}\)は、以下の様になります。 $$ v_{LO} = \frac{1}{2} + \frac{2 \, \sin\left(2 \, \pi x\right)}{\pi} + \frac{2 \, \sin\left(6 \, \pi x\right)}{3 \, \pi} + ... $$

次数を変えて、フーリェ級数で表される方形波をみてみましょう。nを31にすると定義の波に近くなりますが、 値が急に変わる不連続点では急な盛り上がりがでます。これはギブスの現象と呼ばれるものです。

sageへの入力:

# フーリェ級数
show(g.fourier_series_partial_sum(7,1/2))

eq1.png

sageへの入力:

p = plot(g.fourier_series_partial_sum(5, 1/2), -1,1, color='blue',legend_label='n=5')
p += plot(g.fourier_series_partial_sum(11, 1/2), -1,1, color='red',legend_label='n=11')
p += plot(g.fourier_series_partial_sum(31, 1/2), -1,1, color='green',legend_label='n=31')

p.show(figsize=5)

sage6.png

入力波が\(v_{Rin} = V sin(2\pi f_{Rin} t)\)とすると、以下のように\(v_{mix}\)には、\(f_{Rin} - f_{LO}\)成分が含まれます。 $$ \begin{eqnarray} v_{mix} & = & v_{Rin} \times v_{LO} \\ & = & \frac{V}{2} sin(2 \pi f_{Rin} t) + \frac{V}{2\pi} \left \{ -cos(2\pi(f_{Rin} + f_{LO})t) + cos(2\pi(f_{Rin} - f_{LO})t) \right \} + ... \end{eqnarray} $$

コメント

選択肢 投票
おもしろかった 2  
そうでもない 1  
わかりずらい 0  

皆様のご意見、ご希望をお待ちしております。勉強会で分からなかったこと等、お気軽に問い合わせて下さい。

スパム防止に画像の文字列も入力してください。


(Input image string)


添付ファイル: fileth_SoftWareRadio.jpg 289件 [詳細] fileth_LPF.jpg 283件 [詳細] fileth_Fig_7.jpg 321件 [詳細] fileth_Fig_1.jpg 127件 [詳細] fileth_dream.jpg 305件 [詳細] filesage6.png 274件 [詳細] filesage5.png 284件 [詳細] filesage4.png 285件 [詳細] filesage3.png 304件 [詳細] filesage2.png 286件 [詳細] filesage1.png 282件 [詳細] filesage0.png 291件 [詳細] filefreq.png 287件 [詳細] fileFig.A_14.png 325件 [詳細] fileFig_1.png 308件 [詳細] fileeq1.png 285件 [詳細]

トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2016-02-04 (木) 15:30:29 (507d)
SmartDoc